鋰電池新型材料有哪些?
不斷提升鋰電池綜合性能是鋰電池發(fā)展的唯一方向,而要提升鋰電池性能的主要方法就是對鋰電池材料的不斷研發(fā)和創(chuàng)新,下面介紹關(guān)于可以提升鋰電池性能的新型材料基本情況。
1、鋰電池新型材料之新型高熵儲能材料
由德國卡爾斯魯厄理工學(xué)院提出的一種適合儲能應(yīng)用的新型高熵材料,研究人員以多陽離子過渡金屬基高熵氧化物為前體,LiF或NaCl為反應(yīng)物,用簡易機(jī)械化學(xué)方法,制備多陰離子和多陽離子化合物,從而生成鋰化或鈉化材料,成功合成一種具有巖石鹽結(jié)構(gòu)的氟氧基正極活性材料,適用于下一代鋰電池應(yīng)用。
這種鋰電池新型材料優(yōu)勢在于熵穩(wěn)定,表現(xiàn)出更強(qiáng)的鋰儲存性能,改變了傳統(tǒng)鋰電池的組成元素,提升循環(huán)性能,還且可以減少電池正極中有毒和昂貴元素使用。
2、鋰電池新型材料之層狀氧化物
據(jù)行業(yè)媒體報道資料國內(nèi)研究人員在層狀金屬氧化物領(lǐng)域的研究取得進(jìn)展,研究人員發(fā)現(xiàn)在層狀氧化物中氧的擴(kuò)散遠(yuǎn)比人們想象中的容易,氧離子在電池循環(huán)過程中的擴(kuò)散流失導(dǎo)致材料內(nèi)部形成了大量的納米尺寸氣泡,同時引發(fā)材料晶體結(jié)構(gòu)的相變,成果已發(fā)布于《自然·納米技術(shù)》。
這種鋰電池新型材料改變了人們對氧離子在層狀金屬氧化物中的產(chǎn)生和擴(kuò)散規(guī)律的理解,對鋰電池正極材料穩(wěn)定性提供了重要的研究基礎(chǔ)。
3、鋰電池新型材料之多層硅/碳復(fù)合結(jié)構(gòu)
西安交通大學(xué)金屬材料強(qiáng)度國家重點(diǎn)實(shí)驗(yàn)室與西交大蘇州研究院及納米學(xué)院合作,基于原位可控凝膠化過程,制備出Cu導(dǎo)電添加劑及碳納米管增強(qiáng)的多層硅/碳復(fù)合結(jié)構(gòu)。其多層結(jié)構(gòu)特征和碳納米管增韌碳基體可有效釋放充放電過程中硅負(fù)極體積變化而產(chǎn)生的巨大應(yīng)力,Cu導(dǎo)電添加劑的引入提升了復(fù)合材料的導(dǎo)電性。成果已發(fā)布于《美國化學(xué)會·納米》。
突破點(diǎn):該復(fù)合材料電極在1A·g-1的大電流密度下經(jīng)過900次循環(huán)后比容量達(dá)到1500 mAh·g-1;在4A·g-1的大電流密度下循環(huán)展示出1035mAh·g-1的比容量,充分表明在硅顆粒巨大體積變化過程中電極材料仍保持優(yōu)異的結(jié)構(gòu)穩(wěn)定性。該研究工作通過微觀組織和界面結(jié)構(gòu)的巧妙設(shè)計解決了硅負(fù)電極體積效應(yīng)這一瓶頸問題,有望為新一代高性能鋰離子硅負(fù)極的開發(fā)和應(yīng)用提供重要參考。
4、鋰電池新型材料之環(huán)己六酮
中國科學(xué)院院士、南開大學(xué)化學(xué)學(xué)院教授陳軍團(tuán)隊設(shè)計合成了一種具有超高容量的鋰離子電池有機(jī)正極材料——環(huán)己六酮,放電比容量可達(dá)902mAhg-1。此外,由于環(huán)己六酮在高極性的離子液體中的溶解度較低,使得其在離子液體基的電解液中具有較好的循環(huán)性能,組裝的電池體現(xiàn)高容量和長循環(huán)壽命等特征。成果已發(fā)布于《德國應(yīng)用化學(xué)》。
此類有機(jī)正極材料展現(xiàn)了鋰離子電池目前所報道的最高容量值,刷新了鋰離子電池有機(jī)正極材料容量的世界紀(jì)錄。這項工作為高容量有機(jī)電極材料的設(shè)計、制備以及電池應(yīng)用提供了一種新的思路。以環(huán)己六酮為正極的鋰離子電池能夠?qū)崿F(xiàn)電池容量更高、壽命更長等優(yōu)勢,為將來電動汽車、儲能電網(wǎng)等領(lǐng)域的應(yīng)用提供支撐。
5、鋰電池新型材料之石墨+鹵素轉(zhuǎn)換插層化學(xué)
馬里蘭大學(xué)在石墨中引入鹵素轉(zhuǎn)換插層化學(xué),創(chuàng)新研發(fā)復(fù)合電極,并將這一陰極與鈍化石墨陽極相結(jié)合,打造出能達(dá)到4V的鋰離子水系全電池,能量密度為460 Wh/kg,庫侖效率約為100%。電池基于負(fù)離子轉(zhuǎn)換-插層機(jī)制,結(jié)合高能量密度的轉(zhuǎn)換反應(yīng),具有插層的優(yōu)良可逆性,提高水系電池的安全性。
突破點(diǎn):這種電池從根本上不同于“雙離子”電池。雙離子電池將復(fù)雜陰離子,在低填充密度下,可逆性插入到石墨中,穩(wěn)定的陰離子不發(fā)生氧化還原反應(yīng),導(dǎo)致容量低于120mAh/g。新型全電池的能量密度約為460 Wh/kg,超過最先進(jìn)的非水液態(tài)鋰離子電池(考慮到電解質(zhì)質(zhì)量后,其能量密度仍能達(dá)到304Wh/kg)。
6、鋰電池新型材料之氮化硼納米涂層
哥倫比亞大學(xué)通過植入氮化硼(BN)納米涂層穩(wěn)定鋰離子電池中的電解質(zhì),從而降低電池短路的風(fēng)險。
突破點(diǎn):鋰離子電池內(nèi)部的液體電解質(zhì)高度易燃,存在短路、起 火風(fēng)險,但5至10納米的氮化硼(BN)納米膜即可用作保護(hù)層,從而隔絕金屬鋰和電解質(zhì)之間的電接觸,氮化硼(BN)納米膜在化學(xué)上和機(jī)械上又對鋰穩(wěn)定,電子絕緣水平高,所以其可在較大程度上提高鋰離子電池安全性。
7、電池新型材料之非晶Al2O3涂層
韓國漢陽大學(xué)研究人員利用非晶Al2O3實(shí)現(xiàn)石墨表面改良,非晶Al2O3涂層大幅提升了石墨等電池材料與蓄電池隔板的潤濕性。研究人員采用LiCoO2陰極及涂覆Al2O3的石墨陽極開展純電芯測試,經(jīng)試驗(yàn)證明,引入非晶Al2O3后可提高石墨陽極材料的充電性能。成果已發(fā)布于《能源雜志》。
在4000mA/g的高充電速率下,表面改良型石墨的可逆容量約為337.1?mAh/g,其中Al2O3的重量占比為1%,在電量強(qiáng)度為100?mA/g時,相對應(yīng)的電容保有量約為97.2%。據(jù)研究人員預(yù)計,涂層提升了石墨電極整個表面區(qū)域的電解質(zhì)滲透率,從而提升石墨陽極材料的快充性能。該成果提升了鋰離子電池石墨陽極材料的快充性能表現(xiàn)。
8、鋰電池新型材料之多孔硅基復(fù)合負(fù)極(ASD-SiOC)
東華大學(xué)材料學(xué)院楊建平研究員課題組及江莞教授研究團(tuán)隊在硅基鋰離子電池領(lǐng)域取得重要進(jìn)展。研究團(tuán)隊選取苯基橋聯(lián)的有機(jī)硅前驅(qū)體,采用溶膠-凝膠法和高溫煅燒兩步反應(yīng),制備出一種新的多孔硅基復(fù)合負(fù)極(ASD-SiOC),表現(xiàn)出優(yōu)異的循環(huán)穩(wěn)定性和結(jié)構(gòu)穩(wěn)定性。成果已發(fā)布于《德國應(yīng)用化學(xué)》。
這種新的設(shè)計具有眾多優(yōu)點(diǎn):活性基質(zhì)SiOx單元與碳可以實(shí)現(xiàn)原子尺度下的復(fù)合;碳三維網(wǎng)絡(luò)有效提高了材料的導(dǎo)電性;多孔結(jié)構(gòu)既緩沖了體積膨脹,又加快了鋰離子的傳輸;在后續(xù)的循環(huán)過程中,ASD-SiOC負(fù)極可以轉(zhuǎn)化為更加穩(wěn)定的復(fù)合結(jié)構(gòu),可以實(shí)現(xiàn)高的庫倫效率。該研究表明碳分布對于保持復(fù)合負(fù)極材料的結(jié)構(gòu)和性能穩(wěn)定性具有非常重要的作用。
鋰電池新型材料之硅納米粒子
加拿大阿爾伯塔大學(xué)化學(xué)家布里亞克團(tuán)隊發(fā)現(xiàn)將硅塑造成納米級的顆粒有助于防止它破裂。研究人員測試了四種不同尺寸的硅納米顆粒,發(fā)現(xiàn)最小的顆粒(直徑僅為30億分之一米)在多次充放電循環(huán)后表現(xiàn)出最佳的長期穩(wěn)定性。成果已發(fā)布于《材料化學(xué)》。
這項成果克服了在鋰離子電池中使用硅的限制。這一發(fā)現(xiàn)可能導(dǎo)致新一代電池的容量是目前鋰離子電池的10倍,朝著制造新一代硅基鋰離子電池邁出了關(guān)鍵的一步。該研究有廣闊的應(yīng)用前景,特別是在電動汽車領(lǐng)域,可以使其行駛里程更遠(yuǎn),充電速度更快,電池重量更輕。